Zensei: Embedded, Multi-electrode Bioimpedance Sensing for Implicit, Ubiquitous User Recognition

For more details, please visit http://zensei.technology

New interactions and connectivity protocols are increasingly expanding into shared objects and environments, such as furniture, vehicles, lighting, and entertainment systems. For transparent personalization in such contexts, we see an opportunity for embedded recognition, to complement traditional, explicit authentication.

We introduce Zensei, an implicit sensing system that leverages bio-sensing, signal processing and machine learning to classify uninstrumented users by their body’s electrical properties. Zensei could allow many objects to recognize users. E.g., phones that unlock when held, cars that automatically adjust mirrors and seats, or power tools that restore user setting.

We introduce wide-spectrum bioimpedance hardware that measures both amplitude and phase. It extends previous approaches through multi-electrode sensing and high-speed wireless data collection for embedded devices. We implement the sensing in devices and furniture, where unique electrode configurations generate characteristic profiles based on user’s unique electrical properties. Finally, we discuss results from a comprehensive, longitudinal 22-day data collection experiment with 46 subjects. Our analysis shows promising classification accuracy and low false acceptance rate.

This project was completed at MIT Media Lab in collaboration with Takram London and Google ATAP.



  • Munehiko Sato, Rohan S Puri, Alex Olwal Yosuke Ushigome, Lukas Franciszkiewicz, Deepak Chandra, Ivan Poupyrev, Ramesh Raskar. “Zensei: Embedded, Multi-electrode Bioimpedance Sensing for Implicit, Ubiquitous User Recognition,” ACM CHI ’17, Denver, CO, USA, May, 2017.

Project Page